% Walsh's 3rd Axiom (CpCCNqCCNrsCptCCtqCrq), i.e. 0→((¬1→((¬2→3)→(0→4)))→((4→1)→(2→1))) % Completeness follows w.r.t. CpCqp,CCpCqrCCpqCpr,CCNpNqCqp and CCpqCCqrCpr,CCNppp,CpCNpq. % % Proof system configuration: pmGenerator -c -n -s CpCCNqCCNrsCptCCtqCrq % SHA-512/224 hash: 0df075acc552c62513b49b6ed674bfcde1c1b018e532c665be229314 % % Full summary: pmGenerator --transform data/w3.txt -f -n -t . -j 1 % Step counting: pmGenerator --transform data/w3.txt -f -n -t . -p -2 -d % pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d % Compact (1841 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw,CCCpCqrsCCqrs,CCpqCrCpq,CCpqCCCpqrCsr,CCCpqrCqr,CCCNpqrCpr,CCNppCqp,CpCqCrCCpsCts,CpCCpqCrq,CCCNCNpqrsCps,CNNCpqCrCpq,CCNCCpCqpNrsCrs,CNpCqCrCps,CCNNpqCpq,CCpqCCCrrNCNNpsq,CCCpqCNprCsCNpr,CCNpCCNqrCqsCCspCqp % Concrete (24356 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e CpCCNqCCNrsCptCCtqCrq = 1 [0] CCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqp = D11 [1] CCNpCCNqrCCCNsCCNtuCCvCCNwCCNxyCvzCCzwCxwaCCasCtsbCCbpCqp = D1[0] [2] CCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqv = D[0]1 [3] CCCpCCqrCsrtCCCqrCsrt = D[1]1 [4] CCNpCCNqrCCCCsCCtuCvuwCCCtuCvuwxCCxpCqp = D1[3] [5] CCCpCCCNqCCNrsCtuCCuqCrqvwCCCCNqCCNrsCtuCCuqCrqvw = DD1[2]1 [6] CCCpqCrqCCNsCCNtuCCvCCpqCrqwCCwsCts = D[3]1 [7] CCCpCCCqrCsrtuCCCCqrCsrtu = D[4]1 [8] CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw = D[3][0] [9] CCCNpqCCCNrCCNstCCuCCNvCCNwxCuyCCyvCwvzCCzrCsrqCCqaCpa = D[3][1] [10] CCCNpCCNqCCNrsCNptCCtqCrqCCCrqpCqpCCCCCrqpCqpuCvu = D[2][8] [11] CCCCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqvwCxw = D[10][0] [12] CCCCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqpyCCyzCaz = D[5][9] [13] CCCCCpCCqrCsrtCCCqrCsrtuCvu = D[10][1] [14] CCCpCqrsCCqrs = DD1[11]1 [15] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4] [16] CCCNpqCCrCCNsCCNtuCrvCCvsCtswCCwxCpx = D[14][0] [17] CCCCCpqrCqrsCts = D[16]1 [18] CCCCpqCrqsCtCCCpqCrqs = D[7][11] [19] CCCCCCpqCrqsCCCtuCvuCCCpqCrqswCxw = D[15][7] [20] CCpqCrCpq = D[14][11] [21] CCpqCCCpqrCsr = D[14][12] [22] CCCpqrCqr = DDD[17]D[3][2]1[0] [23] CCCNpqrCpr = D[0]D[13][14] [24] CpCCqpCrp = D[23][0] [25] CCNppCqp = D[0][24] % Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 67 steps [26] CpCqp = DDD[17][17]11 [27] CpCqCrCCpsCts = DDD[14]D[6]11DD[3][9][3] [28] CCCCNpqCrqpCsp = D[0][27] [29] CCpqCpq = D[8][25] [30] CpCCpqCrq = DD[1]DDD[3]D[3]D1[9][3][14][0] [31] CCCNCNpqrsCps = D[0]D[13]D[0]DD[15][5][14] [32] CpCqCrp = D[22][20] [33] CCCCCpqrCsrtCqt = DD[14]DD[3][6][25]1 [34] CpCqCrCsp = D[22]D[14][20] % Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 127 steps [35] CpCNpq = D[23][29] % Identity principle (Cpp), i.e. 0→0 ; 135 steps [36] Cpp = DD[23]D[0][30]1 [37] CNNCpqCrCpq = DD[28]D[12]D[28]D[0]DD[0]D[19]D[0]D[19]D[0]D[19][14][18]1 [38] CCpNCCqCrqpCsNCCqCrqp = DD1[26][37] [39] CCNCCpCqpNrsCrs = D[8][38] [40] CCNCCppNqrCqr = D[8]DD1[36][37] [41] CpCqCrNCCsCtsNp = D[39][32] [42] CNpCqCrCps = D[22]DDD[14]D1DDD[17]D[3]D[3]D1[12]1[0]1DD[3][12][39] [43] CCNNpqCpq = D[8]D[0]D[22]DD[8]D[0]D[39]D[22][18][24] [44] CCpqCCCrrNCNNpsq = D[8]D[0]DD[0]DDD[17]D[3]D[3]D1[20]1[40][20] [45] CCCpqCNprCsCNpr = D[0]D[33]D[21]D[23]D[16]D[23][38] [46] CpCqCrCsNNp = D[43][34] [47] CCpqCrCsCtNNCuCpq = D[14][46] % Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 1283 steps [48] CCNppp = D[39]DDD[0]D[22]DDD1[7]1[18]DD[8]D[0]D[22]D[23][41][25]1 [49] CCNpCCNqrCqsCCspCqp = DDDD[0]D[22]DD[8]D[0]DD[45]D[40][34]1[24]D[0]DD[8]D[0]DD[45]D[14][47]1[24]11 % Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 3227 steps [50] CCpqCCqrCpr = D[14]D[14][49] % Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 4821 steps [51] CCNpNqCqp = DD[49]DDD[0]DDD[0]D[22]DD[8]D[0]D[22]D[22]D[14][41][32]D[22]D[31][29]1[27]1D[23][39] % Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 14557 steps [52] CCpCqrCCpqCpr = DD[0]DD[8]D[0]DD[45][47]1DD[16]D[43]DDD[0]DD[28]D[21]D[22]DD[8]D[0]D[31][41][25]1[27]1D[8]DDDDDD[0][42][28]1DD[8]D[0]D[33]D[43][32][30][12][25]DD[49]DD[8]D[0]DDD[0]D[22]D[44][42][46]1DDD[0]D[22]D[44][27]D[21][50]1[20]