
Application for a Computing Time Project on
the RWTH Compute Cluster

Project extension proposal for project “pmGenerator”

Period: 01.04.2024 – 31.03.2025

An exhaustive generator to find shortest

known condensed detachment proofs,

focussing on completeness proofs in

Hilbert systems over minimal single axioms

for propositional calculus

Samiro Discher

March 20, 2024

Principal investigator: Thomas Noll[

Technical contact & project contributor: Samiro Discher[

[Lehrstuhl für Informatik 2 (Softwaremodellierung und Verifikation)

1

Abstract

Utilization of a proof generator with shared memory parallelization
making heavy use of Intel’s oneTBB library, and distributed memory
parallelization via MPI for a computing-intensive filtering method.

As described in the original proposal1, the tool pmGenerator can
generate exhaustive proof collections in concise formal representations.
Since version 1.2, which I officially released on March 3, 2024, after four
months of testing, it allows user-defined axioms to customize systems
based on rules D for condensed detachment and N for necessitation.
The latter can be used to define systems of modal logic but is disabled
by default. Version 1.2 introduces plenty of features meant to assist
in generating proofs that are not guaranteed to be minimal but with a
high emphasis on shortness. This proved to be essential in finding
derivations even of short theorems in more complex propositional
proof systems, which is taken to an extreme when exploring 1-bases,
i.e. complete systems with only a single theorem as an axiom schema.

Following a paper from June 2021 by M. Walsh and B. Fitelson2,
which as of March 2024 is still listed as “under review”, there are only
seven minimal single axioms for propositional logic in terms of {→,¬}
under modus ponens, which is encompassed by consensed detachment.
These are Meredith’s popular single axiom CCCCCpqCNrNsrtCCtpCsp and
Walsh’s six axioms CCpCCNpqrCsCCNtCrtCpt, CpCCqCprCCNrCCNstqCsr,
CpCCNqCCNrsCptCCtqCrq, CpCCNqCCNrsCtqCCrtCrq, CCpqCCCrCstCqCNsNpCps
and CCCpqCCCNrNsrtCCtpCsp. Walsh’s only remaining candidate can
be ruled out by generating all of its theorems via pmGenerator -c

-n -s CCCpqCCrNsCtNtCCtpCrp -g -1 – which turn out to be only
finitely many schemas via a calculation that takes a few milliseconds.
I could reproduce completeness results with pmGenerator for the other
axioms excluding Walsh’s second axiom, for which I succeeded only in
generating a non-constructive proof using the Vampire theorem prover,
thus to find such a proof within its Hilbert system remains an open
challenge. So far, I did not attempt to reproduce the claim that those
seven axioms are the only ones of their kind, but I might in the future.

While all 1-bases take great advantage from compact condensed
detachment proof notation due to very long intermediate formulas
commonly occurring in their proofs, the system of Walsh’s second

1https://xamidi.github.io/pmGenerator/pdf/rwth1392_abstract.pdf
2Preprint: http://fitelson.org/walsh.pdf. (As of March 2024, it still contains

several mistakes and refers to an inaccessible code base, of which I informed Prof. Fitelson
in September 2023 as part of an email conversation.)

2

https://xamidi.github.io/pmGenerator/pdf/rwth1392_abstract.pdf
http://fitelson.org/walsh.pdf

axiom is an excellent example of a proof system that requires immense
effort and very long formulas to arrive at short conclusions. Its shortest
non-trivial proof D11 translates to

1. ϕ→ ((χ→ (ϕ→ η))→ ((¬η → ((¬τ → θ)→ χ))→ (τ → η))) (A1)
2. (ϕ→ ((χ→ (ϕ→ η))→ ((¬η → ((¬τ → θ)→ χ))→ (τ → η))))→

((ψ → ((ϕ→ ((χ→ (ϕ→ η))→ ((¬η → ((¬τ → θ)→ χ))→ (τ → η))))→ ζ))→
((¬ζ → ((¬ξ → σ)→ ψ))→ (ξ → ζ))) (A1)

3. (ψ → ((ϕ→ ((χ→ (ϕ→ η))→ ((¬η → ((¬τ → θ)→ χ))→ (τ → η))))→ ζ))→
((¬ζ → ((¬ξ → σ)→ ψ))→ (ξ → ζ)) (MP) : 1, 2

and its shortest proof of any theorem smaller than its 21-symbol axiom
is DDD11DDD111DDDDD111111DDDDD111111 (33 steps), which proves
the 17-symbol theorem CpCqCCNpCCNrstCrp. This merely indicates
the magnitude of that system’s complexity and how condensed detach-
ment leads to significant savings in data to be processed, especially
since formulas tend to blow up in size for increasing lengths of proofs.

An automated approach using well-optimized tools is required to
explore these kinds of proof systems and to tackle questions regarding
their complexity. For example, exploring systems in propositional
logic might in the long run lead to useful results towards solving the
NP versus coNP problem in the field of proof complexity.

Keywords: Logic, Proof theory, Hilbert systems, Condensed detachment

3

Achieved Results

Apart from supporting the development and testing of the free and open-
source software project pmGenerator 3, this computing time project generated
a lot of knowledge in the past year, including but not limited to:

• Five shorter proofs in the “Shortest known proofs of the propositional
calculus theorems from Principia Mathematica”4 collection of Meta-
math.

• Exhausted proof length increments in databases for nine proof systems:

i. Frege’s calculus simplified by Lukasiewicz (480.99 GB): 35 7→ 39

ii. Meredith’s 1-basis (434.50 GB): 65 7→ 83

iii. Walsh’s 1-bases (499.54, 383.44, 412.84, 815.79, 404.05, 470.47 GB):
135 7→ 161, 33 7→ 43, 59 7→ 73, 147 7→ 169, 47 7→ 55, 77 7→ 95

iv. S5 (standard modal extension of i.) (218.25 GB): 22 7→ 30

• Lists of smallest 1000 theorems with known minimal proofs for all of
the above systems. These can be found linked in the project’s readme5.

• Abstract proof summaries of shortest known completeness proofs for
Meredith’s axiom and Walsh’s axioms, except Walsh’s second axiom,
whose file is missing a proof for CCpqCCqrCpr towards completeness.

– This led to the launch of a corresponding proof minimization
challenge6, in which everyone is welcome to participate.

Computations to build exhaustive proof databases as part of this project
provided valuable insights in terms of memory and CPU usage, data growth
rates and information density. Great variations in seemingly similar systems
may appear particularly striking. This information can be found in the
project’s readme, along with log files that resulted from computations, and
download links to the compressed databases.

3https://github.com/xamidi/pmGenerator
4https://us.metamath.org/mmsolitaire/pmproofs.txt
5https://xamidi.github.io/pmGenerator/README.html
6https://github.com/xamidi/pmGenerator/discussions/2

4

https://github.com/xamidi/pmGenerator
https://us.metamath.org/mmsolitaire/pmproofs.txt
https://xamidi.github.io/pmGenerator/README.html
https://github.com/xamidi/pmGenerator/discussions/2

